

Tetrahedron: Asymmetry 11 (2000) 1455-1458

Synthesis of the first water-soluble C_2 -symmetric bis(oxazolidinone) as a potential bifunctional chiral auxiliary

Sang-gi Lee,* Chung Woo Lim, Dong Chan Kim and Jae Kyun Lee

Life Sciences Division, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, South Korea

Received 24 January 2000; accepted 21 February 2000

Abstract

The first water-soluble C_2 -symmetric bis(oxazolidinone) 1, a potential bifunctional chiral auxiliary, has been synthesized via regioselective intramolecular cyclization of a biscarbamate. The sodium enolate derived from N , N' -di(phenylacetyl)bis(oxazolidinone) 7 reacts with methyl iodide with high facial selectivity (95:5). \oslash 2000 Elsevier Science Ltd. All rights reserved.

It is often observed, as reviewed by Whitesell, that auxiliaries with C_2 -symmetry elements perform in their capacity as stereochemical directors to provide higher levels of absolute stereochemical control compared to those totally lacking in symmetry.¹ Therefore, C_2 -symmetrization of the non-symmetrical chiral auxiliaries is central in the development of chiral auxiliaries. Recently, to reduce the effective molecular mass (EMM) as far as possible within the limits of maintaining high stereocontrol, a series of C_2 -symmetric imidazolidinones² and a cyclic sulfamide³ have been synthesized. In spite of the high chiral induction abilities of chiral oxazolidin-2-ones as chiral auxiliaries, no C_2 -symmetric versions have been reported yet.⁴ Therefore, we decided to synthesize C_2 -symmetric bis(oxazolidinone) 1 as a potential bifunctional chiral auxiliary. Bis(oxazolidinone) 1 has the following characteristic features: (a) each of the oxazolidinone rings could exhibit equivalent functions either sterically or stereoelectronically, and should act as an independent chiral-directing group; (b) C_2 -symmetry of 1 could reduce the effective molecular mass (EMM = 86). Moreover, both enantiomers are available from inexpensive (D)- and (L)-tartaric acid.

^{*} Corresponding author. E-mail: L3712@kistmail.kist.re.kr

Recently, we and others have synthesized C_2 -symmetric chiral bis(oxazolines),⁵ bis(oxazines)⁶ and bis(pyrrolinyl) or fused-bicyclic pyrrolinyl⁷ via regioselective intramolecular cyclization of C_2 -symmetric bis(amide) and bis(amine). It has also been reported that 2,3-epoxy alcohols react with isocyanates to provide the corresponding oxazolidinones.⁸ Therefore, for the synthesis of the bis(oxazolidinone) 1, the regioselective intramolecular cyclization reactions have been extended to the C_2 -symmetric bis(carbamate) 4 which was synthesized from readily available dibenzyloxy dimesylate 2^{5a} as shown in Scheme 1. Debenzylation of 2 using Pd(OH)₂/H₂ afforded the debenzylated product 3 almost quantitatively. Subsequent reaction of 3 with benzyl isocyanate in THF afforded 4 (90%). When the bis(carbamate) 4 was treated with NaH, the ring closure occurred highly regioselectively to form bis(oxazolidinone) 5 in 90% yield.

For the debenzylation, N, N' -dibenzyl bis(oxazolidinone) 5 was subjected to Birch conditions (Na/NH3). Unfortunately, all attempts to isolate the debenzylated product 1 from the organic phase failed. Instead, we could only isolate 1,2-diphenylethane 6, which may be formed via intramolecular reductive homocoupling of the N-benzyl groups followed by debenzylation. Eventually, it was found that the bis(oxazolidinone) 1 is highly soluble in water. Thus, the desired bis(oxazolidinone) 1 could be isolated from the aqueous phase, i.e. after evaporation of water, the solid residue was extracted with Soxhlet using acetonitrile to give 1 in 72% yield. All spectral data including X-ray crystallographic analysis consistent with the structure of 1 (Fig. 1). As shown in X-ray crystal structure of 1, the two oxazolidinone rings formed a concave shape and the two nitrogen atoms are placed on opposite sides. Worthy of note is that the high water solubility of 1 may provide an additional advantage, i.e. easy separation, as with a solid supported auxiliary.¹⁰

As a preliminary application of this novel water-soluble C_2 -symmetric bifunctional bis(oxazolidinone) 1, auxiliary controlled diastereoselective methylation has been examined. The phenylacetyl units were successfully coupled to the auxiliary 1 according to the procedure reported by Prashad

Figure 1. ORTEP diagram of compound 1

et al., and afforded 7 in 90% yield.¹¹ For the diastereoselective methylation of 7, to a solution of 7 in THF (0.1 M in THF) and HMPA $(2/1, v/v)$ was slowly added 2.2 equivalents of NaN(TMS)₂ at -78° C followed by excess methyl iodide (5 equivalent) to give the methylated products in 78% yield. The distribution of the three possible diastereomers $8, 9$ and 10 was determined by ¹H NMR analysis. In ¹H NMR spectrum, the methyl proton signal of the major isomer 10 resonated at 1.52 ppm (d, $J=7.0$ Hz) and the two sets of methyl proton signals of the minor isomer 9 were detected at 1.48 and 1.32 ppm (d, $J=7.0$ Hz). The integration ratio of the major isomer 10 and minor isomer 9 is 10:1. If it is assumed that both alkylation steps proceeded with the same diastereoselectivity and the selectivity of one of the alkylation steps is X:1, the expected ratio of 8:9:10 should be 1:2X:X². Calculation from the ratio of 9 and 10 resulted in a selectivity X of 20, consistent with a facial selectivity of 95:5. Hydrolysis of 10 afforded (S) - α -methylphenylacetic acid, and the bifunctional chiral auxiliary 1 can be recovered quantitatively from the aqueous phase by Soxhlet extraction using acetonitrile.

In conclusion, we have synthesized a novel water-soluble C_2 -symmetric bis(oxazolidinone) 1 via base induced regioselective intramolecular cyclization of bis(carbamate) 4. The high diastereoselective methylation of 7 clearly indicates that each of the oxazolidinone rings could exhibit equivalent functions both sterically or stereoelectronically, and acts as an independent chiraldirecting group. Moreover, the high water solubility of 1 allowed its easy separation from the product after cleavage of the N-acyl group. Studies on the extension of our bis(oxazolidinone) system to other asymmetric reactions are in progress.

Acknowledgements

We are grateful to the Korea Institute of Science and Technology for support of this work. We are also grateful to Ms. Jae-Gyung Lee for her assistance in X-ray structure determination.

References

- 1. Whitesell, J. K. Chem. Rev. 1989, 89, 1581.
- 2. (a) Davies, S. G.; Mortlock, A. A. Tetrahedron Lett. 1991, 32, 4787. (b) Davies, S. G.; Mortlock, A. A. Tetrahedron Lett. 1991, 32, 4791. (c) Davies, S. G.; Mortlock, A. A. Tetrahedron: Asymmetry 1991, 2, 1001. (d) Davies, S. G.; Mortlock, A. A. Tetrahedron Lett. 1991, 33, 1117. (e) Davies, S. G.; Mortlock, A. A. Tetrahedron 1993, 49, 4419. (f) Davies, S. G.; Evans, G. B.; Mortlock, A. A. Tetrahedron: Asymmetry 1994, 5, 585. (g) Davies, S. G.; Edwards, A. J.; Evans, G. B.; Mortlock, A. A. Tetrahedron 1994, 50, 6621. (h) Davies, S. G.; Evans, G. B.; Pearce, S. Tetrahedron 1994, 50, 7521.
- 3. Ahn, K. H.; Yoo, D. J.; Kim, J. S. Tetrahedron Lett. 1992, 33, 6661.
- 4. Recent review for chiral oxazolidinones, see: (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Aldrichimica Acta 1997, 30, 3. (b) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
- 5. (a) Lee, S.-g.; Lim, C. W.; Song, C. E.; Kim, I. O.; Jun, C. H. Tetrahedron: Asymmetry 1997, 8, 2927. (b) Lee, S.-g.; Lim, C. W.; Song, C. E.; Kim, I. O Tetrahedron: Asymmetry 1997, 8, 4027. (c) Lee, S.-g.; Lim, C. W.; Song, C. E.; Kim, K. M.; Jun, C. H. J. Org. Chem. 1999, 64, 4445.
- 6. Lee, S.-g.; Lee, S. H; Song, C. E.; Chung, B. Y. Tetrahedron: Asymmetry 1999, 10, 1795.
- 7. Pérard-Viret, J.; Van der Rest, G.; Rassat, A. Tetrahedron Lett. 1999, 40, 7101.
- 8. (a) Roush, W. R.; Adam, M. A. J. Org. Chem. 1985, 50, 3752. (b) Sunazuka, T.; Naganitsu, T.; Tanaka, H.; Omura, S.; Sprengler, P. A.; Smith, A. B. Tetrahedron Lett. 1993, 34, 4447. (c) Knapp, S.; Kukkola, P. J.; Sharma, S.; Pietranico, S. Tetrahedron Lett. 1987, 28, 5399. (d) McCrombie, S. W.; Nagabhushan, T. L. Tetrahedron Lett. 1987, 28, 5395.
- 9. Data for 1: mp 247-249°C; $[\alpha]_D^{25}$ -9.26 (c 1.02, H₂O); ¹H NMR (300 MHz, DMSO-d₆) δ 7.84 (bs, 2H), 4.35 $(t, J=8.9 \text{ Hz}, 2\text{H})$, 4.06 (ABq, $J=4.6 \text{ Hz}, 2\text{H}$), 3.86 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6) δ 159.79, 66.69, 54.72. The X-ray data were collected on an Enraf-Nonius CAD-4 automatic diffractometer with graphitemonochromated MoK α (λ =0.71073 Å) at 293(2) K. The structure was solved by the Patterson method (SHELXS-86) and was refined by full-matrix least-square technique. $C_6H_8N_2O_4$, M = 172.14, orthorhombic, $a=5.638(3)$, $b=5.649(2)$, $c=22.237(5)$ Å, space group $=P_1C_1C_1(10.19)$, $V=708.2(5)$ Å³, $Z=4$, $D_c=1.596$ g/cm³, crystal size = $0.2 \times 0.2 \times 0.18$ mm, $F(000)$ = 360, a total of 568 reflections in the range of $1.83^{\circ} \le \theta \le 24.94^{\circ}$ measured, the $\Delta \rho$ max and $\Delta \rho$ min are 0.288 and 0.265 e Å⁻³, goodness-of-fit=1.133, $I/\sigma(I) \ge 2.0$, $R = 0.0537$.
- 10. Polymer supported oxazolidinines, see: (a) Allin, S. M.; Shuttleworth, S. J. Tetrahedron Lett. 1996, 37, 8023. (b) Burgess, K.; Lim, D. Chem. Commun. 1997, 785. (c) Purandare, A. V.; Natarajan, S. Tetrahedron Lett. 1997, 38, 8777. (d) Phoon, C. W.; Abell, C. Tetrahedron Lett. 1998, 39, 2655.
- 11. Prashad, M.; Kim, H.-Y.; Har, D.; Repic, O.; Blacklock, T. J. Tetrahedron Lett. 1998, 39, 9369.